De Novo Palmitate Synthesis Supports Oncogenic Signalling and Tumor Growth Through Diverse Mechanisms: Implications for FASN-Targeted Therapeutics

نویسنده

  • Timothy S. Heuer
چکیده

Palmitate, the enzymatic product of fatty acid synthase (FASN), provides a substrate for the synthesis of longand short-chain fatty acids. Many recent studies have expanded our knowledge about the roles palmitate and lipid synthesis play in tumor cell biology beyond supporting energy metabolism and membrane building [1,2]. The recent article by Ventura and colleagues [3] described cell biology and pharmacology studies using a novel, selective small molecule FASN inhibitor, TVB-3166. They demonstrated that FASN inhibition disrupts oncogenic signalling and tumor growth in xenograft models through inhibition of pathways that include Wnt/beta-catenin and expression of cMyc: potent oncogenes historically recalcitrant to direct pharmacological inhibition. Discussed here is how these findings advance our mechanistic understanding of the diverse biological roles of palmitate and its integration into various signalling pathways driving tumor cell proliferation and survival. These insights highlight the promising potential of selective, potent FASN inhibitors as a novel therapeutic strategy for cancer and other illnesses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of de novo Palmitate Synthesis by Fatty Acid Synthase Induces Apoptosis in Tumor Cells by Remodeling Cell Membranes, Inhibiting Signaling Pathways, and Reprogramming Gene Expression

UNLABELLED Inhibition of de novo palmitate synthesis via fatty acid synthase (FASN) inhibition provides an unproven approach to cancer therapy with a strong biological rationale. FASN expression increases with tumor progression and associates with chemoresistance, tumor metastasis, and diminished patient survival in numerous tumor types. TVB-3166, an orally-available, reversible, potent, and se...

متن کامل

FASN Inhibition and Taxane Treatment Combine to Enhance Anti-tumor Efficacy in Diverse Xenograft Tumor Models through Disruption of Tubulin Palmitoylation and Microtubule Organization and FASN Inhibition-Mediated Effects on Oncogenic Signaling and Gene Expression

Palmitate, the enzymatic product of FASN, and palmitate-derived lipids support cell metabolism, membrane architecture, protein localization, and intracellular signaling. Tubulins are among many proteins that are modified post-translationally by acylation with palmitate. We show that FASN inhibition with TVB-3166 or TVB-3664 significantly reduces tubulin palmitoylation and mRNA expression. Disru...

متن کامل

Targeting FASN in Breast Cancer and the Discovery of Promising Inhibitors from Natural Products Derived from Traditional Chinese Medicine

Molecular targeted therapy has been developed for cancer chemoprevention and treatment. Cancer cells process a fundamental change in its bioenergetic metabolism from normal cells on an altered lipid metabolism, also known as the de novo fatty acid synthesis, for sustaining their high proliferation rates. Fatty acid synthesis is now associated with clinically aggressive tumor behavior and tumor ...

متن کامل

Fatty acid synthesis is a therapeutic target in human liposarcoma.

Liposarcomas (LS) are mesenchymal tumors that can recur after surgical resection and often do not respond to presently available medical therapies. This study demonstrates the dependence of LS on de novo long-chain fatty acid synthesis for growth. Lipogenesis can be impaired by inhibiting the activities of lipogenic enzymes, including acetyl CoA-carboxylase (ACC) and fatty acid synthase (FASN),...

متن کامل

A Fatty Acid Synthase Inhibitor Shows New Anticancer Mechanisms

The pharmacological modulation of proteins and molecules related up-regulation of FASN in precursor lesionsmight represent an obligatory to cancer is an important goal for translational science. Fatty acid synthase (FASN) is a complex dimeric protein that converts acetyl-CoA and malonyl-CoA into palmitic acid in a NADPH-dependent reaction in mammalian cells (Maier et al., 2006). Many cancers pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016